\(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\) [203]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 153 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {(A-3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

(A-B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))-(A-3*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/a/d+(A-3*B)*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)
/a/d+(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1
/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4104, 3872, 3856, 2720, 3853, 2719} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {(A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d (a \sec (c+d x)+a)}-\frac {(A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

((A - 3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + ((A - B)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - ((A - 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d) + ((
A - B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\int \sqrt {\sec (c+d x)} \left (\frac {1}{2} a (A-B)-\frac {1}{2} a (A-3 B) \sec (c+d x)\right ) \, dx}{a^2} \\ & = \frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {(A-3 B) \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{2 a}+\frac {(A-B) \int \sqrt {\sec (c+d x)} \, dx}{2 a} \\ & = -\frac {(A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {(A-3 B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}+\frac {\left ((A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a} \\ & = \frac {(A-B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))}+\frac {\left ((A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a} \\ & = \frac {(A-3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.73 (sec) , antiderivative size = 420, normalized size of antiderivative = 2.75 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) (A+B \sec (c+d x)) \left (-2 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+6 \sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+12 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}-12 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}-6 \sqrt {\sec (c+d x)} \left (2 (A-3 B) \cos (d x) \csc (c)+2 (-A+B) \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{6 a d (B+A \cos (c+d x)) (1+\sec (c+d x))} \]

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(A + B*Sec[c + d*x])*((-2*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1
 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeome
tric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c
+ d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I
)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + 12*A*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] - 12*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] - 6*S
qrt[Sec[c + d*x]]*(2*(A - 3*B)*Cos[d*x]*Csc[c] + 2*(-A + B)*Tan[(c + d*x)/2])))/(6*a*d*(B + A*Cos[c + d*x])*(1
 + Sec[c + d*x]))

Maple [A] (verified)

Time = 9.11 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.08

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -3 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -5 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(318\)

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*(-cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*EllipticF(cos(1/2*d*
x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-3*B)*sin(1/2*d*x+1/2*
c)^4-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-5*B)*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/sin
(1/2*d*x+1/2*c)^3/(2*sin(1/2*d*x+1/2*c)^2-1)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.62 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A - 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 3 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (\sqrt {2} {\left (-i \, A + 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 3 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left ({\left (A - 3 \, B\right )} \cos \left (d x + c\right ) - 2 \, B\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*((sqrt(2)*(-I*A + I*B)*cos(d*x + c) + sqrt(2)*(-I*A + I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*si
n(d*x + c)) + (sqrt(2)*(I*A - I*B)*cos(d*x + c) + sqrt(2)*(I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c)
 - I*sin(d*x + c)) + (sqrt(2)*(I*A - 3*I*B)*cos(d*x + c) + sqrt(2)*(I*A - 3*I*B))*weierstrassZeta(-4, 0, weier
strassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + (sqrt(2)*(-I*A + 3*I*B)*cos(d*x + c) + sqrt(2)*(-I*A +
 3*I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*((A - 3*B)*cos(
d*x + c) - 2*B)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {A \sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{\frac {5}{2}}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sec(c + d*x)**(3/2)/(sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)**(5/2)/(sec(c + d*x) + 1), x)
)/a

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x)),x)

[Out]

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x)), x)